Answer: The relationship between the ping pong ball's release height and its bounce height in this experiment is directly proportional.
Numerical evidence:
1. When the ping pong ball is released from a height of 30 cm, it bounces to a height of 15 cm.
2. When the ping pong ball is released from a height of 45 cm, it bounces to a height of 22.5 cm.
3. When the ping pong ball is released from a height of 60 cm, it bounces to a height of 30 cm.
Step-by-step explanation:
Each piece of evidence supports the claim of a direct proportional relationship between the release height and the bounce height. In each case, the bounce height is exactly half of the release height. For example, when the ball is released from 30 cm, it bounces to 15 cm, which is half of the release height. This pattern is consistent in all three pieces of evidence, indicating a direct proportional relationship.
The relationship in the data connects to the concept of potential energy being converted into kinetic energy and vice versa. When the ping pong ball is released from a certain height, it possesses potential energy due to its position above the ground. As the ball falls, this potential energy is converted into kinetic energy, which is the energy of motion. When the ball hits the ground and bounces back, this kinetic energy is converted back into potential energy as the ball gains height again. The direct proportional relationship observed in the data confirms this concept, as the ball's bounce height is directly related to the amount of potential energy it had at the release height.
I hope this helps! :)