38.0k views
2 votes
Find the x-intercept of the function f(x)=log(x-5)

User Amit Singh
by
9.0k points

1 Answer

5 votes

as you'd know, to get the x-intercept, we simply start off by setting y = 0 and then solving for "x".


\begin{array}{llll} \textit{Logarithm Cancellation Rules} \\\\ log_a a^x = x\qquad \qquad \stackrel{ \textit{we'll use this one} }{a^(log_a (x))=x} \end{array} \\\\[-0.35em] ~\dotfill\\\\ f(x)=\log(x-5)\implies f(x)=\log_(10)(x-5)\implies 0=\log_(10)(x-5) \\\\\\ 10^0=10^{\log_(10)(x-5)}\implies 10^0=x-5\implies 1=x-5\implies 6=x \\\\[-0.35em] ~\dotfill\\\\ ~\hfill~(6~~,~~0)~\hfill~

User Dmytro Kozlovskyi
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.