When selecting 2 letters from the set {A, B, C, D}, considering that the order matters, we can use the concept of permutations to calculate the number of possible arrangements.
The number of ways to arrange 2 letters from a set of 4 can be calculated using the formula for permutations:
P(n, r) = n! / (n - r)!
Where n is the total number of items (in this case, 4) and r is the number of items being selected (in this case, 2).
Using this formula, the number of ways to arrange 2 letters from A, B, C, D is:
P(4, 2) = 4! / (4 - 2)!
= 4! / 2!
= (4 x 3 x 2 x 1) / (2 x 1)
= 24 / 2
= 12
Therefore, there are 12 possible ways to arrange 2 letters selected from A, B, C, D when considering that the order matters.
~~~Harsha~~~