Answer:
To factor the given expression: 32b - 16b - b(32 - 16) - b(32 + 16) - b(32 - 16) - b(32 + 16)
Let's simplify it step by step:
32b - 16b - b(32 - 16) - b(32 + 16) - b(32 - 16) - b(32 + 16)
= 16b - b(16) - b(48) - b(16) - b(48)
Now, we can factor out 'b' from each term:
b(16) + b(-16) + b(-48) + b(-16) + b(-48)
= 16b - 16b - 48b - 16b - 48b
Simplifying further:
= (16b - 16b - 48b - 16b - 48b)
= (-32b - 64b)
= -96b
Therefore, the factored expression is -96b.