154k views
1 vote
‏ Derivative for 2/x is ?

1 Answer

7 votes

Answer:


-2x^(-2) \ \text{or} \ -(2)/(x^2)

Explanation:

Find
(d)/(dx)[(2)/(x) ].

(1) - Pull out the constant


(d)/(dx)[(2)/(x) ]\\\\\Longrightarrow 2(d)/(dx)[(1)/(x) ]

(2) - Flip the fraction


2(d)/(dx)[(1)/(x)]\\\\\Longrightarrow 2(d)/(dx)[x^(-1)]

(3) - Apply the power rule]


\boxed{\left\begin{array}{ccc}\text{\underline{Power Rule:}}\\\\(d)/(dx)[x^n]=nx^(n-1) \end{array}\right}\\\\\\2(d)/(dx)[x^(-1)]\\\\\Longrightarrow 2[(-1)x^(-1-1)]\\\\\Longrightarrow 2[-x^(-2)]\\\\\therefore \boxed{\boxed{(d)/(dx)[(2)/(x) ] =-2x^(-2) \ \text{or} \ -(2)/(x^2)}}

Thus, the problem is solved.

User Jesseca
by
8.6k points

No related questions found