Answer:
Max at t=2, 128 m/s
Min at t=6, 0 m/s
Explanation:
Given the position function of a particle with respect to time, find the minimum and maximum velocity the particle travels over the interval [1,7].

(1) - Find the velocity function of the particle
The velocity function is a derivative of the position function.
![s'(t)=v(t)\\\\s(t)=t^4-16t^3+72t^2+5\\\\\Longrightarrow s'(t)=(d)/(dx)[t^4-16t^3+72t^2+5] \\\\\text{Use the derivative rules.}\\\\\boxed{\left\begin{array}{ccc}\text{\underline{Power Rule:}}\\\\(d)/(dx)[x^n]=nx^(n-1) \end{array}\right} \ \ \boxed{\left\begin{array}{ccc}\text{\underline{Constant Rule:}}\\\\(d)/(dx)[k]=0 \end{array}\right} \\\\\\\Longrightarrow s'(t)=(4)t^(4-1)-16(3)t^(3-1)+72(2)t^(2-1)+0\\\\\Longrightarrow s'(t)=4t^(3)-48t^(2)+144t\\\\](https://img.qammunity.org/2024/formulas/mathematics/high-school/jruu9r6164zwq8yi4huzfhkcv8q1ds4v1q.png)

(3) - Take the derivative of v(t)

(4) - Let v'(t)=0 and solve for "t," these are the critical points
![v'(t)=12t^2-96t+144\\\\\Longrightarrow 0=12t^2-96t+144\\\\\Longrightarrow 0=12[t^2-8t+12]\\\\\Longrightarrow 0=t^2-8t+12\\\\\Longrightarrow (t-6)(t-2)=0\\\\\therefore \text{The critical points are} \ \boxed{t=6 \ \text{and} \ t=2}](https://img.qammunity.org/2024/formulas/mathematics/high-school/ah8ordz2r2u9jkun9rqk75yx43frzih3lm.png)
(5) - Find the max/min values (in this case these values represent the particle's velocity) by plugging the critical points into v(t)

Thus, at time, t=6, the particle's velocity is smallest, 0 m/s. And at time, t=2, the particle's velocity is greatest, 128 m/s.