Answer:
0.42
Explanation:
To solve the problem, we need to add the probability of picking a club to the probability of picking a face card, and then subtract the probability of picking a club that is also a face card (because we would have counted it twice).
There are 13 clubs in a standard deck, so the probability of picking a club is 13/52 or 0.25.
There are 12 face cards (4 jacks, 4 queens, and 4 kings) in a standard deck, so the probability of picking a face card is 12/52 or 0.23.
However, there are 3 cards that are both clubs and face cards (the jack of clubs, queen of clubs, and king of clubs), so we need to subtract the probability of picking one of those cards. There are 3 of them out of 52 total cards, so the probability of picking a club that is also a face card is 3/52 or 0.06.
Therefore, the probability of picking a club OR a face card is:
0.25 + 0.23 - 0.06 = 0.42 (rounded to two decimal places).
So the answer is 0.42.