Let's go step-by-step:
We are given:
- A two-tailed test
- Sample size n = 9
- P-value = 0.035
For a two-tailed test, a P-value of 0.035 means that 2.5% of the t-distribution lies in each tail. Since this is a two-tailed test, the total critical region is 5% (2.5% in each tail).
With a sample size of 9, the t-distribution has 9-1 = 8 degrees of freedom.
So we need to find the t-values that correspond to the 2.5th and 97.5th percentiles of the t-distribution with 8 degrees of freedom.
Looking at a t-distribution table or using a calculator, we find:
2.5th percentile t-value = 1.86
97.5th percentile t-value = 2.31
Therefore, the range of possible t values yielding a P-value of 0.035 is:
1.86 < t < 2.31
The answer is E: 1.86 < t < 2.31 b