(a) $$(4.7 \times 10^5) \cdot (2.9 \times 10^4)$$
To multiply these numbers, we multiply the coefficients and add the exponents:
$$(4.7 \cdot 2.9) \times 10^{5+4} = 13.63 \times 10^9$$
The answer in scientific notation is $$1.363 \times 10^{10}$$.

(b) $$\frac{5.8 \times 10^3}{2 \times 10^8}$$
To divide these numbers, we divide the coefficients and subtract the exponents:
$$\frac{5.8}{2} \times 10^{3-8} = 2.9 \times 10^{-5}$$
The answer in scientific notation is $$2.9 \times 10^{-5}$$.
(c) $$(1.5 \times 10^3) + 2491$$
To add these numbers, we keep the larger exponent and add the coefficients:
$$1.5 \times 10^3 + 2491 = 1.5 \times 10^3 + 2.491 \times 10^3 = 3.991 \times 10^3$$
The answer in scientific notation is $$3.991 \times 10^3$$.
(d) $$0.0005 - 1.5 \times 10^{-4}$$
To subtract these numbers, we keep the larger exponent and subtract the coefficients:
$$0.0005 - 1.5 \times 10^{-4} = 0.0005 - 0.00015 = 0.00035$$
The answer is $0.00035$