102k views
10 votes
100 POINTS! SHOW WORK!

Given : MO bisects

100 POINTS! SHOW WORK! Given : MO bisects-example-1

2 Answers

5 votes

If MO bisects <LMN then m<LMN=2m<LMO


\\ \sf\longmapsto 5x-22=2(x+31)


\\ \sf\longmapsto 5x-22=2x+62


\\ \sf\longmapsto 5x-2x=62+22


\\ \sf\longmapsto 3x=84


\\ \sf\longmapsto x=(84)/(3)


\\ \sf\longmapsto x=28

User Midverse Engineer
by
3.4k points
8 votes

Answer:


\huge\boxed{\boxed{\mathcal{C)x=13.25}}}

Explanation:

to understand this

you need to know about:

  • disects
  • equation
  • PEMDAS

tips and formulas:

  • disects divide an angel to two equal angles

let's solve:


step - 1 : define


\text{according to the question}


\sf5x - 22 = x + 31


step - 2 : solve


  1. \sf \: add \: 22 \: to \: both \: sides : \\ \sf5x - 22 + 22 = x+31+22\\ \sf 5x=x+53

  2. \sf\text{ cancel x from both sides}\\ \sf 5x-x=x-x+53\\ \sf 4x=53

  3. \sf divide \: both \: sides \: by \: 4 \\ \sf (4x)/(4) = (53)/(4) \\ \sf x = 13.25
User Iwazovsky
by
3.8k points