165k views
3 votes
Meg plotted the graph below to show the relationship between the temperature of her city and the number of people at a swimming pool:

Main title on the graph is Swimming Pool Population. Graph shows 0 to 30 on x axis at increments of 5 and 0 to 12 on y axis at increments of 1. The label on the x axis is Temperature in degree C, and the label on the y axis is Number of People at the Pool. Dots are made at the ordered pairs 2.5, 1 and 5, 2 and 7.5, 2 and 7.5, 3 and 7.5, 4 and 10, 5 and 10, 6 and 12.5, 6 and 15, 7 and 15, 8 and 17.5, 5 and 17.5, 7 and 20, 9 and 22.5, 7 and 22.5, 9 and 25, 11 and 27.5, 12.
Part A: In your own words, describe the relationship between the temperature of the city and the number of people at the swimming pool. (5 points)

Part B: Describe how you can make the line of best fit. Write the approximate slope and y-intercept of the line of best fit. Show your work, including the points that you use to calculate slope and y-intercept. (5 points)

User Nalan
by
8.1k points

1 Answer

2 votes

Answer:

Explanation:

Part A: Based on the given graph, we can observe that as the temperature of the city increases, the number of people at the swimming pool generally tends to increase as well. This suggests a positive correlation between temperature and the pool's population. In other words, when it gets hotter, more people are likely to visit the swimming pool. The relationship is not strictly linear, but it shows a general trend of increasing pool population with increasing temperature.

Part B: To determine the line of best fit, we can calculate the approximate slope and y-intercept using the given data points. Let's select two points from the data, such as (2.5, 1) and (12, 12):

Slope (m) = (change in y) / (change in x)

= (12 - 1) / (12 - 2.5)

= 11 / 9.5

≈ 1.16

To find the y-intercept (b), we can choose one of the points and substitute the values into the slope-intercept form (y = mx + b). Let's use the point (2.5, 1):

1 = 1.16 * 2.5 + b

1 = 2.9 + b

b ≈ -1.9

Therefore, the approximate slope of the line of best fit is 1.16, and the approximate y-intercept is -1.9.

User Blink
by
9.2k points