Answer: the price of one senior citizen ticket is $10, and the price of one student ticket is $5.
Explanation:
Let's assume the price of one senior citizen ticket is 's' dollars and the price of one student ticket is 't' dollars.
According to the given information, on the first day, the school sold 7 senior citizen tickets and 11 student tickets, totaling $125. This can be expressed as the equation:
7s + 11t = 125 ---(1)
On the second day, the school sold 14 senior citizen tickets and 8 student tickets, totaling $180. This can be expressed as the equation:
14s + 8t = 180 ---(2)
We now have a system of two equations with two variables. We can solve this system to find the values of 's' and 't'.
Multiplying equation (1) by 8 and equation (2) by 11, we get:
56s + 88t = 1000 ---(3)
154s + 88t = 1980 ---(4)
Subtracting equation (3) from equation (4) eliminates 't':
(154s + 88t) - (56s + 88t) = 1980 - 1000
98s = 980
s = 980 / 98
s = 10
Substituting the value of 's' back into equation (1), we can solve for 't':
7s + 11t = 125
7(10) + 11t = 125
70 + 11t = 125
11t = 125 - 70
11t = 55
t = 55 / 11
t = 5
Therefore, the price of one senior citizen ticket is $10, and the price of one student ticket is $5.