92.5k views
2 votes
Suppose the function y=y(x) solves the initial value problem

dy/dx=2y/1+x^2
y(0)=2
find y(2)

User Kiriakos
by
8.3k points

1 Answer

7 votes

Answer:


y(2)=2e^{2\tan^(-1)(2)}

Explanation:

Given the initial value problem.


(dy)/(dx)=(2y)/(1+x^2) ; \ y(0)=2

Find y(2)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


\boxed{\left\begin{array}{ccc}\text{\underline{Seperable Differential Equation:}}\\(dy)/(dx) =f(x)g(y)\\\\\rightarrow\int(dy)/(g(y))=\int f(x)dx \end{array}\right }

(1) - Solving the separable DE


(dy)/(dx)=(2y)/(1+x^2) \\\\\Longrightarrow (1)/(y)dy =(2)/(1+x^2)dx\\ \\\Longrightarrow \int (1)/(y)dy =2 \int(1)/(1+x^2)dx\\\\\Longrightarrow \boxed{ \ln(y)=2\tan^(-1)(x)+C}

(2) - Find the arbitrary constant "C" with the initial condition


\text{Recall} \rightarrow y(0)=2\\ \\ \ln(y)=2\tan^(-1)(x)+C\\\\\Longrightarrow \ln(2)=2\tan^(-1)(0)+C\\\\\Longrightarrow \ln(2)=0+C\\\\\therefore \boxed{C=\ln(2)}

(3) - Form the solution


\boxed{\boxed{ \ln(y)=2\tan^(-1)(x)+\ln(2)}}

(4) - Solve for y


\ln(y)=2\tan^(-1)(x)+\ln(2)\\\\ \Longrightarrow \ln(y)-\ln(2)=2\tan^(-1)(x)\\\\ \Longrightarrow \ln((y)/(2) )=2\tan^(-1)(x)\\\\ \Longrightarrow e^{\ln((y)/(2) )}=e^{2\tan^(-1)(x)}\\\\ \Longrightarrow (y)/(2) =e^{2\tan^(-1)(x)}\\\\\therefore \boxed{y=2e^{2\tan^(-1)(x)}}

(5) - Find y(2)


y=2e^{2\tan^(-1)(x)}\\\\\therefore \boxed{\boxed{y(2)=2e^{2\tan^(-1)(2)}}}

Thus, the problem is solved.

User IPValverde
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories