120k views
2 votes
if the sum of three real numbers is $0$ and their product is $17$, then what is the sum of their cubes?

1 Answer

4 votes

Answer:

51

Explanation:

x + y + z = 0 →- -(x + y) = z → z^3 = - (x^3 + 3x^2y + 3xy^2 + y^3)

xyz = 17

xy [ -(x + y) ] = 17

xy (x + y) = -17 → x^2y + xy^2 = -17 → 3x^2y + 3xy^2 = -51

So......

x^3 + y^3 + [ z^3 ]

x^3 + y^3 + [ - ( x^3 + 3x^2y + 3xy^2 + y^3) ] =

-3x^2y - 3xy^2 =

-[ 3x^2y + 3xy^2] =

- [-51] =

51

please rate 5 stars

User Fletcher
by
7.7k points