Explanation:
If cos(θ) = 3/23 and θ is in Quadrant I, we can use the Pythagorean identity to find sin(θ):
sin^2(θ) + cos^2(θ) = 1
sin^2(θ) + (3/23)^2 = 1
sin^2(θ) = 1 - (3/23)^2
sin^2(θ) = 1 - 9/529
sin^2(θ) = 520/529
sin(θ) = √(520/529)
sin(θ) = (sqrt(520))/23
Now we can use the definition of tangent to find tan(2θ):
tan(2θ) = (2tan(θ))/(1-tan^2(θ))
We know that tan(θ) = sin(θ)/cos(θ), so:
tan(θ) = (sqrt(520))/69
tan^2(θ) = 520/4761
tan(2θ) = (2*(sqrt(520))/69)/(1 - (520/4761))
tan(2θ) = (2*(sqrt(520))/69)/(3641/4761)
tan(2θ) = (2*(sqrt(520))/69)*(4761/3641)
tan(2θ) = (9522/3641)*(sqrt(520))/69
tan(2θ) = (9522*sqrt(520))/(3641*69)
tan(2θ) = (168*sqrt(130))/529
Therefore, the exact value of tan(2θ) in simplest radical form is (168*sqrt(130))/529.