198k views
0 votes
find the solution of the given initial value problem. (a computer algebra system is recommended.) 4y''' y' 5y = 0; y(0) = 5, y'(0) = 1, y''(0) = −1

User Dim
by
8.2k points

1 Answer

4 votes

Answer:


y=(17)/(13) e^(-x)+(48)/(13) e^{(1)/(2)x }\cos(x)+(6)/(13) e^{(1)/(2)x }\sin(x)

Explanation:

Given the third-order differential equation with initial conditions.


4y'''+y'+5y=0; \ y(0)=5, \ y'(0)=1, \ y''(0)=-1

(1) - Find the characteristic equation


4y'''+y'+5y=0\\\\\Longrightarrow 4m^3+0m^2+m+5=0\\\\\Longrightarrow \boxed{4m^3+m+5=0}

(2) - Solve the characteristic equation for "m." First using the rational root theorem


4m^3+m+5=0\\\\\rightarrow (p)/(q) = \pm (1,5)/(1,2,4) \\\\\text{\underline{Trying m=-1 first: }}\\\\ \begin{array}c\vphantom{\frac12}-1 & 4 & 0 & 1 & 5\\\cline{1-1} & \downarrow & -4 & 4 & -5\\\cline{2-5} & 4 & -4 & 5 & 0\end{array}\\\\\text{The remainder is 0} \ \therefore \boxed{m=-1} \ \text{is a root.}\\\\\text{Now we are left with}\rightarrow \boxed{4m^2-4m+5=0} \ \text{Use the quadratic equation}


\boxed{\left\begin{array}{ccc}\text{\underline{The Quadratic Equation:}}\\ax^2+bx+c=0\\\\x=(-b \pm√(b^2-4ac) )/(2a) \end{array}\right}


4m^2-4m+5=0\\\\\Longrightarrow m=(4 \pm√((-4)^2-4(4)(5)) )/(2(4)) \\\\\Longrightarrow m=(4 \pm√(-64) )/(8)\\\\\Longrightarrow m=(4)/(8) \pm (8i)/(8) \\\\\Longrightarrow \boxed{m=(1)/(2) \pm i}

Thus, we have found three roots.


m=-1, (1)/(2) \pm i

(3) - Form the solution.


\boxed{\left\begin{array}{ccc}\text{\underline{Solutions to Higher-order DE's:}}\\\\\text{Real,distinct roots} \rightarrow y=c_1e^(m_1t)+c_2e^(m_2t)+...+c_ne^(m_nt)\\\\ \text{Duplicate roots} \rightarrow y=c_1e^(mt)+c_2te^(mt)+...+c_nt^ne^(mt)\\\\ \text{Complex roots} \rightarrow y=c_1e^(\alpha t)\cos(\beta t)+c_2e^(\alpha t)\sin(\beta t)+... \ ;m=\alpha \pm \beta i\end{array}\right}

Notice that we have one real, distinct root and complex roots. Thus, we can form the solution in the following manner.


\therefore \text{the general solution}\rightarrow\boxed{\boxed{y=c_1e^(-x)+c_2e^{(1)/(2)x }\cos(x)+c_3e^{(1)/(2)x }\sin(x)}}

(4) - Use the given initial conditions to find the arbitrary constants "c_1," "c_2," and "c_3"


\text{Recall...} \ y(0)=5, \ y'(0)=1, \ y''(0)=-1

Take two derivatives of the general solution.


y=c_1e^(-x)+c_2e^{(1)/(2)x }\cos(x)+c_3e^{(1)/(2)x }\sin(x)\\\\\\ \Rightarrow y'=-c_1e^(-x)+c_2(1)/(2)e^{(1)/(2)x}\cos(x)-c_2e^{(1)/(2)x}\sin(x)+c_3e^{(1)/(2)x }\cos(x)+c_3(1)/(2)e^{(1)/(2)x }\sin(x) \\\\\Longrightarrow \boxed{y'=-c_1e^(-x)+(c_3+(1)/(2) c_2)e^{(1)/(2)x}\cos(x)+(-c_2+(1)/(2) c_3)(3)/(2)e^{(1)/(2)x }\sin(x)}\\\\\\


\Rightarrow y''=c_1e^(-x)+(1)/(2) (c_3+(1)/(2) c_2)e^{(1)/(2)x }\cos(x)+(c_3+(1)/(2) c_2) e^{(1)/(2)x}sin(x)+(-c_2+(1)/(2) c_3)e^{(1)/(2)x } \cos(x)+(1)/(2) (-c_2+(1)/(2) c_3)e^{(1)/(2)x }\sin(x)\\\\\Longrightarrow \boxed{y''=c_1e^(-x)+(-(3)/(4) c_2+c_3)e^{(1)/(2)x }\cos(x)+(- c_2-(3)/(4)c_3) c_3e^{(1)/(2)x }\sin(x)}

Plug in the initial conditions and form a system of equations.


\left\{\begin{array}{ccc}5=c_1+c_2\\1=-c_1+(1)/(2)c_2+c_3 \\-1=c_1-(3)/(4)c_2+c_3 \end{array}\right

Creating a matrix and using a calculator to row-reduce,


\Longrightarrow\left[\begin{array}{ccc}1&1&0\\-1&(1)/(2)&1\\1&-(3)/(4)&1\end{array}\right] =\left[\begin{array}{ccc}5\\1\\-1\end{array}\right] \\\\\Longrightarrow \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] =\left[\begin{array}{ccc}(17)/(13) \\(48)/(13) \\(6)/(13) \end{array}\right] \\\\\therefore \boxed{c_1=(17)/(13) , c_2=(48)/(13) , \ and \ c_3=(6)/(13) }

(5) - Thus, the given differential equation is solved with the given initial conditions


\boxed{\boxed{y=(17)/(13) e^(-x)+(48)/(13) e^{(1)/(2)x }\cos(x)+(6)/(13) e^{(1)/(2)x }\sin(x)}}

find the solution of the given initial value problem. (a computer algebra system is-example-1
User Ortwin Gentz
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories