86.6k views
5 votes
Find the measure of angle E.

A) 9 degrees
B) 79 degrees
C) 97 degrees
D) 48 degrees

Find the measure of angle E. A) 9 degrees B) 79 degrees C) 97 degrees D) 48 degrees-example-1
User Dzolnjan
by
7.7k points

1 Answer

1 vote

Answer:

D) 48°

Explanation:

Step 1: First, we need to know the sum of the measures of the interior angles of the polygon. We can determine the sum using the formula,

(n - 2) * 180, where n is the number of sides of the polygon.

Since this polygon has 4 sides, we plug in 4 for n:

Sum = (4-2) * 180

Sum = 2 * 180

Sum = 360°

Thus, we know that the sum of the measures of the interior angles of the polygon is 360°.

Step 2: Now we can set the sum of four angles equal to 360 to solve for x:

127 + (5x + 3) + 88 + (10x + 7) = 360

215 + (5x + 3 + 10x + 7) = 360

215 + 15x + 10 = 360

225 + 15x = 360

15x = 135

x = 9

Step 3: Now we can plug in 9 for x in the equation representing the measure of E to find the measure of E:

E = 5(9) + 3

E = 45 + 3

E = 48

Thus, the measure of E is 48°

Optional Step 4:

We can check that E = 48 by again making the sum of the angles = 360. We already know the measures of angles J, E, and S so we can just plug in 9 for x in the expression representing angle J. If we get 360 on both sides, we've correctly found the measure of E:

K + J + E + S = 360

(10(9) + 7) + (127 + 48 + 88) = 360

(90 + 7) + 263 = 360

97 + 263 = 360

360 = 360

Thus, we've correctly found the measure of E

User Jagadeeshwar
by
7.3k points

No related questions found