Answer:
m∠DFE = 69°
Explanation:
The tangent of a circle is always perpendicular to the radius.
Therefore, as ABC is the tangent to the circle, and OB is the radius of the circle:
⇒ m∠CBO = 90°
Interior angles of a triangle sum to 180°. Therefore:
⇒ m∠COB + m∠CBO + m∠BCO = 180°
⇒ m∠COB = 180° - m∠CBO - m∠BCO
⇒ m∠COB = 180° - 90° - 48°
⇒ m∠COB = 42°
Angles on a straight line sum to 180°. Therefore:
⇒ m∠DOE + m∠COB = 180°
⇒ m∠DOE = 180° - m∠COB
⇒ m∠DOE = 180° - 42°
⇒ m∠DOE = 138°
The angle at the center is twice the angle at the circumference.
Therefore:
⇒ m∠DOE = 2 × m∠DFE
⇒ m∠DFE = m∠DOE ÷ 2
⇒ m∠DFE = 138° ÷ 2
⇒ m∠DFE = 69°