Answer:
Explanation:
sqrt{-2x^{2}-2x+11 }=\sqrt{-x^{2} +3}
Square both sides:
-2x^2 - 2x + 11 = -x^2 + 3
0 = x^2 + 2x - 8
( x + 4)(x - 2) = 0
x = -4, 2.
As the original equation contains square roots some of these roots might be extraneous.
Checking:
x = -4
sqrt(-2(-4)^2 - 2(-4) + 11 = sqrt(-13)
sqrt (-(-4)^2 + 3) = sqrt(-13)
x = 2:
sqrt(-2(4) - 2(2) + 11) = sqrt(-8 - 4 + 11) = sqrt(-1)
sqrt(-(2)^2 + 3) = sqrt(-1)
So both are roots