Answer:
g43 = 79.5
Explanation:
geometric sequence = ar^(n-1), where a is first term and r is common ratio.
g23 = ar^(23-1) = ar^22 = 16.
g28 = ar^27 = 24.
now do g28/g23:
(ar^27) / (ar^22) = 24/16,
a^(1-1) r^(27-22) = 24/16,
a^0 r^5 = 24/16,
r^5 = 24/16 = 1.5,
r = (1.5)^1/5 ≈ 1.084.
ar^22 = 16,
a = 16/(r^22) ≈ 2.687.
so g43 = ar^42 ≈ (2.687)(1.084)^42 = 79.5