118k views
2 votes
use the laplace transform to solve the given system of differential equations. dx dt = −x y dy dt = 2x x(0) = 0, y(0) = 4

1 Answer

5 votes

Answer:


x(t)=(4)/(3)e^t-(4)/(3)e^(-2t)\\ \\y(t)=(4)/(3)e^(-2t)+(8)/(3) e^t}

Explanation:

Given:


\left \{ {{x'=-x+y} \atop {y'=2x}} \right.\\\\\text{With initial conditions:} \ x(0)=0 \ \text{and} \ y(0)=4

Solve the system of differential equations using Laplace transforms.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(1) - Take the Laplace transform of each equation


\boxed{\left\begin{array}{ccc}\text{\underline{Laplace Transforms of DE's:}}\\L\{y''\}=s^2Y-sy(0)-y'(0)\\L\{y'\}=sY-y(0)\\L\{y\}=Y\end{array}\right}

For equation 1:


x'=-x+y\\\\\Longrightarrow L\{x'\}=-L\{x\}+L\{y\}\\\\\Longrightarrow sX-0=-X+Y\\\\\Longrightarrow sX=Y-X\\\\\Longrightarrow \boxed{Y=sX+X} \rightarrow \text{Equation 1}

For equation 2:


y'=2x\\\\\Longrightarrow L\{y'\}=2L\{x\}\\\\\Longrightarrow sY-4=2X\\\\\Longrightarrow \boxed{2X=sY-4} \rightarrow \text{Equation 2}

Now we have the following system:


\left \{ {{Y=sX+X} \atop {2X=sY-4}} \right.

(2) - Solve the system using algebraic techniques (i.e. substitution, elimination, etc..)


\text{Substituting equation 1 into equation 2: }\\\\\Longrightarrow 2X=s^2X+sX-4\\\\\Longrightarrow s^2X+sX-2X=4\\\\\Longrightarrow X(s^2+s-2)=4\\\\\Longrightarrow \boxed{X=(4)/(s^2+s-2)}

(3) - Take the inverse Laplace transform


L^(-1)\{X\}=4L^(-1)\{(1)/(s^2+s-2)\}

**One the RHS we will have to use partial fraction decomposition to break up the fraction.


(1)/(s^2+s-2) \Rightarrow (1)/((s-1)(s+2))\\\\\Longrightarrow [(1)/((s-1)(s+2))=(A)/(s-1) +(B)/(s+2)](s-1)(s+2)\\\\\Longrightarrow 1=A(s+2)+B(s-1)\\\\\Longrightarrow 1=As+2A+Bs-B\\\\\Longrightarrow0s+1=(A+B)s+(2A-B)\\\\\Longrightarrow \left \{ {{A+B=0} \atop {2A-B=1}} \right. \\\\\Longrightarrow \text{After solving the system we get:} \ \boxed{A=(1)/(3) \ \text{and} \ B=-(1)/(3) }

Now we have:


L^(-1)\{X\}=(4)/(3) L^(-1)\{(1)/(s-1)\}-(4)/(3) L^(-1)\{(1)/(s+2)\}


\boxed{\left\begin{array}{ccc}\text{\underline{Table of basic Laplace Transforms:}}\\1\rightarrow (1)/(s) \\t^n\rightarrow (n!)/(s^(n+1))\\e^(at) \rightarrow(1)/(s-a)\\ \sin(at)\rightarrow(a)/(s^2+a^2)\\\cos(at)\rightarrow(s)/(s^2+a^2)\\e^(at)\sin(bt)\rightarrow(b)/((s-a)^2+b^2)\\e^(at)\cos(bt)\rightarrow(s-a)/((s-a)^2+b^2)\\t^ne^(at)\rightarrow(n!)/((s-a)^(n+1)) \end{array}\right}


L^(-1)\{X\}=(4)/(3) L^(-1)\{(1)/(s-1)\}-(4)/(3) L^(-1)\{(1)/(s+2)\}\\\\\Longrightarrow \boxed{\boxed{x(t)=(4)/(3)e^t-(4)/(3)e^(-2t)}}

(4) - Repeat steps 2-3 to find y(t)


\text{Taking equation 2:} \ 2X=sY-4\\\\\Longrightarrow \boxed{X= (sY-4)/(2)} \ \text{Substitute this into equation 1}


\Longrightarrow Y=s((sY-4)/(2)})+(sY-4)/(2)}\\\\\Longrightarrow [Y=(s^2Y-4s+sY-4)/(2)]2\\\\\Longrightarrow 2Y=s^2Y-4s+sY-4\\\\\Longrightarrow s^2Y+sY-2Y=4s+4\\\\\Longrightarrow Y(s^2+s-2)=4s+4\\\\\Longrightarrow \boxed{Y= (4s+4)/(s^2+s-2)}


L^(-1)\{Y\}=L^(-1)\{(4s+4)/(s^2+s-2)\}\\\\\Longrightarrow 4s+4=A(s-1)+B(s+2)\\\\\Longrightarrow 4s+4=As-A+Bs+2B\\\\\Longrightarrow 4s+4=(A+B)s+(-A+2B)\\\\\Longrightarrow \left \{ {{A+B=4} \atop {-A+2B=4}} \right. \\\\\Longrightarrow A=(4)/(3) \ \text{and} \ B= (8)/(3)


L^(-1)\{Y\}=L^(-1)\{(4s+4)/(s^2+s-2)\}\\\\\Longrightarrow L^(-1)\{Y\}=(4)/(3) L^(-1)\{(1)/(s+2) \}+(8)/(3) L^(-1)\{(1)/(s-1) \}\\\\\Longrightarrow \boxed{\boxed{y(t)= (4)/(3)e^(-2t)+(8)/(3) e^t}}

Thus, the system is solved.

User Ephenodrom
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories