Answer:

Explanation:
Given:

Solve the system of differential equations using Laplace transforms.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(1) - Take the Laplace transform of each equation

For equation 1:

For equation 2:

Now we have the following system:

(2) - Solve the system using algebraic techniques (i.e. substitution, elimination, etc..)

(3) - Take the inverse Laplace transform

**One the RHS we will have to use partial fraction decomposition to break up the fraction.
(s+2)\\\\\Longrightarrow 1=A(s+2)+B(s-1)\\\\\Longrightarrow 1=As+2A+Bs-B\\\\\Longrightarrow0s+1=(A+B)s+(2A-B)\\\\\Longrightarrow \left \{ {{A+B=0} \atop {2A-B=1}} \right. \\\\\Longrightarrow \text{After solving the system we get:} \ \boxed{A=(1)/(3) \ \text{and} \ B=-(1)/(3) }](https://img.qammunity.org/2024/formulas/mathematics/high-school/i5d4hneqngthozhzh2kn8855ho80k2wggg.png)
Now we have:



(4) - Repeat steps 2-3 to find y(t)

![\Longrightarrow Y=s((sY-4)/(2)})+(sY-4)/(2)}\\\\\Longrightarrow [Y=(s^2Y-4s+sY-4)/(2)]2\\\\\Longrightarrow 2Y=s^2Y-4s+sY-4\\\\\Longrightarrow s^2Y+sY-2Y=4s+4\\\\\Longrightarrow Y(s^2+s-2)=4s+4\\\\\Longrightarrow \boxed{Y= (4s+4)/(s^2+s-2)}](https://img.qammunity.org/2024/formulas/mathematics/high-school/em0exi1qwnh17xo0srfml6n82y2q8sty71.png)


Thus, the system is solved.