67.5k views
1 vote
Find the linear approximation of the given function at (0, 0). f(x, y).

f (x, y)= √ (y +cos (x)^2

User Ordag
by
8.2k points

1 Answer

4 votes

Answer:


√(y+\cos^2x)\approx 1+(y)/(2) at (0,0)

Explanation:

The linear approximation of a function
f(x,y) at a given point
(x_0,y_0) is given by the equation:


f(x,y)\approx f(x_0,y_0)+(\partial f)/(\partial x)_((x_0,y_0))(x-x_0)+(\partial f)/(\partial y)_((x_0,y_0))(y-y_0)

Find f(0,0)


f(x,y) = √(y+\cos^2x)


f(0,0)=√(0+\cos^20)=√(0+1)=√(1)=1

Determine ∂f/∂x and ∂f/∂y at (0,0)


\displaystyle (\partial f)/(\partial x)_((0,0))=(-\sin x\cos x)/(√(y+\cos^2x))=(-\sin0\cos0)/(√(0+\cos^20))=0 \\\\(\partial f)/(\partial y)_((0,0))=(1)/(2√(y+\cos^2x))=(1)/(2√(0+\cos^20))=(1)/(2)

Plug the above values into the linear approximation equation


f(x,y)\approx f(0,0)+(\partial f)/(\partial x)_((0,0))(x-0)+(\partial f)/(\partial y)_((0,0))(y-0)\\√(y+\cos^2x)\approx 1+0x+(1)/(2)y\\√(y+\cos^2x)\approx 1+(y)/(2)

Therefore, the linear approximation of the given function at (0,0) is
√(y+\cos^2x)\approx 1+(y)/(2)

User Aec
by
8.4k points

No related questions found