Answer:
e^(sin x) + (x^(1 + e))/(1 + e) + c
Explanation:
split up the integral:
∫(e^sinx)/sec x dx + ∫x^e dx.
let's focus on ∫(e^sinx)/sec x dx first.
∫(e^sinx)/sec x dx = ∫cos x (e^sinx) dx.
use a sub.
let u = sin x.
du/dx = cos x, dx = du/cos x
now we have ∫cos x (e^u) du/cos x
= ∫(cos x (e^u) du) / cos x
= ∫(e^u) du
= e^u
= e^sin x
that is answer to first integral.
now for second integral:
∫x^e dx.
just pretend like the e is a regular number.
∫x^e dx
= (1/(1 + e)) x^(1 + e)
= (x^(1 + e)) / (1 + e)
that is second integral.
so, the answer to the question is e^sin x + (x^(1 + e)) /(1+e) + c