Answer:
To formulate a linear programming model to find an optimal schedule for the city police department, we must first identify the decision variables, objective function, and constraints.
Decision variables:
Let X_t be the number of policemen starting work in period t each day, where t = 1, 2, ..., 6.
Objective function:
Minimize the total number of policemen required each day, which can be expressed as:
Minimize Z = X_1 + X_2 + X_3 + X_4 + X_5 + X_6
Constraints:
Each period must meet the minimum requirement for policemen:
X_1 + X_2 + X_3 + X_4 + X_5 + X_6 >= 20
X_2 + X_3 + X_4 + X_5 + X_6 + X_1 >= 22
X_3 + X_4 + X_5 + X_6 + X_1 + X_2 >= 18
X_4 + X_5 + X_6 + X_1 + X_2 + X_3 >= 16
X_5 + X_6 + X_1 + X_2 + X_3 + X_4 >= 19
X_6 + X_1 + X_2 + X_3 + X_4 + X_5 >= 23
Non-negativity constraints:
X_t >= 0, for t = 1, 2, ..., 6
Therefore, the linear programming model can be formulated as follows:
Minimize Z = X_1 + X_2 + X_3 + X_4 + X_5 + X_6
subject to:
X_1 + X_2 + X_3 + X_4 + X_5 + X_6 >= 20
X_2 + X_3 + X_4 + X_5 + X_6 + X_1 >= 22
X_3 + X_4 + X_5 + X_6 + X_1 + X_2 >= 18
X_4 + X_5 + X_6 + X_1 + X_2 + X_3 >= 16
X_5 + X_6 + X_1 + X_2 + X_3 + X_4 >= 19
X_6 + X_1 + X_2 + X_3 + X_4 + X_5 >=