Answer:
1) x = 5
2) x = 9
3) CX = 9
Explanation:
1) Tangents from an external point to circle are equal length.
AB = AD
5x - 4 = 3x + 6
Add 4 to both the sides,
5x = 3x + 6 + 4
5x = 3x + 10
Subtract 3x from both sides,
5x - 3x = 10
2x = 10
Divide both sides by 2,
x = 10 ÷ 2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`
2) Tangent of the circle is perpendicular to the radius the circle at the point of contact. So, ΔADC is a right-angle triangle. To find x, we can use Pythagorean theorem.
AC = AB + BC
AC = 6 + x
Pythagorean theorem,
AC² = DC² + DA²
(x + 6)² = x² + 12²
x² + 12x + 36 = x² + 144 {Identity: (a +b)² = a² + 2ab + b²}
12x + 36 = x² + 144 - x²
12x + 36 = 144
Subtract 36 from both sides,
12x = 144 - 36
12x = 108
Divide both sides by 12,
x = 108 ÷ 12

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3) Pythagorean theorem,
CX² + XB² = BC²
CX² + 12² = 15²
CX² + 144 = 225
Subtract 144 from both sides,
CX² = 225 - 144
CX² = 81
Take square root,
CX= √81
