48.0k views
0 votes
What are the Roots/Zeroes/X-Intercepts of the following equation:


Y =-8x^(4) +3x^(2) +9



Please help, what process do I apply ?

1 Answer

5 votes

Answer:


x = \sqrt{(3 + 3√(33))/(16)} or


x = -\sqrt{(3 + 3√(33))/(16)} or


x = i\sqrt{(3 - 3√(33))/(16)} or


x = -i\sqrt{(3 - 3√(33))/(16)}

Explanation:

You can use a substitution and treat it as a quadratic equation.

Let u = x^2.

y = -8x^4 + 3x² + 9

Apply the substitution.

y = -8u² + 3u + 9

-8u² + 3u + 9 = 0

8u² - 3u - 9 = 0

Use the quadratic formula to solve for u.


u = (-(-3) \pm √((-3)^2 - 4(8)(-9)))/(2(8))


u = (3 \pm √(9 + 288))/(16)


u = (3 \pm √(297))/(16)


u = (3 \pm 3√(33))/(16)


u = (3 + 3√(33))/(16) or
u = (3 - 3√(33))/(16)

Remember that u = x², so now we substitute back x² for u.


x^2 = (3 + 3√(33))/(16) or
x^2 = (3 - 3√(33))/(16)


x = \sqrt{(3 + 3√(33))/(16)} or


x = -\sqrt{(3 + 3√(33))/(16)} or


x = \sqrt{(3 - 3√(33))/(16)} or


x = -\sqrt{(3 - 3√(33))/(16)}

Two of those roots are complex, so we deal with that now.


x = \sqrt{(3 + 3√(33))/(16)} or


x = -\sqrt{(3 + 3√(33))/(16)} or


x = i\sqrt{(3 - 3√(33))/(16)} or


x = -i\sqrt{(3 - 3√(33))/(16)}

User Ken Bonny
by
7.7k points