201k views
5 votes
Find the derivative guys pls help

Find the derivative guys pls help-example-1
User Louis Cruz
by
8.3k points

1 Answer

5 votes


\qquad\longrightarrow \sf f(x) = sin^(-1) \bigg((x)/(2)\bigg)\\

The Derivative of f(x) with respect to x-


\qquad\longrightarrow \sf (d)/(dx) \:sin^(-1) \bigg((x)/(2)\bigg)\\


\qquad\longrightarrow \sf \frac{1}{\sqrt{1-\bigg((x)/(2)\bigg)^2}}\;* (d)/(dx)\:(x)/(2)\\


\qquad\sf\because\boxed{\sf{ \: (d)/(dx) sin^(-1)x = (1)/(√(1-x^2))}}\\


\qquad\longrightarrow \sf \frac{1}{\sqrt{1-\bigg((x^2)/(4)\bigg)}}\;*(1)/(2) \:x^(1-1)\\


\qquad \sf\because\boxed{\sf{ (d)/(dx )x^n = nx^(n-1)}}\\


\qquad\longrightarrow \sf \frac{1}{\sqrt{1-\bigg((x^2)/(4)\bigg)}}\;*(1)/(2) * 1\\


\qquad\longrightarrow \sf \frac{1}{\sqrt{1-\bigg((x^2)/(4)\bigg)}}\;*(1)/(2) \\


\qquad\longrightarrow \sf(1)/(2)\: \frac{1}{\sqrt{1-\bigg((x^2)/(4)\bigg)}}\\


\qquad\longrightarrow \underline{\sf\: \frac{1}{2\:\sqrt{1-\bigg((x^2)/(4)\bigg)}}}\\

Henceforth, Option C) is the correct answer.

User Mahendra Kawde
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.