Answer:
sec θ csc θ
Explanation:
identities: sin²θ + cos²θ = 1, sec θ = 1/cos θ, csc θ = 1/sin θ.
secθ csc θ = (1/cosθ) (1/sinθ) = 1/(cosθsinθ) = 1/(sinθcosθ)
tan θ + cot θ = sinθ/cosθ + 1/tan θ
= sin θ/cos θ + cosθ/sinθ
= (sin²θ + cos²θ) / (sinθ cosθ)
= 1/sinθcosθ
= 1/cosθsinθ
= sec θ csc θ