We can use Coulomb's law to calculate the magnitude of the electric field at a distance r away from a point charge Q:
E = k * Q / r^2
where k is Coulomb's constant, Q is the charge of the point charge, and r is the distance from the point charge.
In this problem, we have a point charge Q of -10 nC located at (1.2 cm, 0 cm), and we want to find the x-component of the electric field at a distance r = 5.3 cm away at position (-4.1 cm, 0 cm).
To find the x-component of the electric field, we need to use the cosine of the angle between the electric field vector and the x-axis, which is cos(180°) = -1.
So, the x-component of the electric field at position (-4.1 cm, 0 cm) is:
E_x = - E * cos(180°) = - (k * Q / r^2) * (-1)
where k = 9 x 10^9 N*m^2/C^2 is Coulomb's constant.
Substituting the given values, we get:
E_x = - (9 x 10^9 N*m^2/C^2) * (-10 x 10^-9 C) / (0.053 m)^2
E_x ≈ -30,566.04 N/C
Rounding this to two significant figures and including the appropriate units, we get:
The x-component of the electric field is about -3.1 x 10^4 N/C (to the left).