133,050 views
39 votes
39 votes
in triangle pqr pq equals 39 inches, pr equals 17 inches, and hte altitude pn equals 15 inches. find ar. consider all cases, two answers

User John Meagher
by
2.4k points

2 Answers

24 votes
24 votes


\text{The correct answer is QR is, 44 in.}

Using Pythagoras theorem in ΔPNQ:


\boxed{(Hypotenuse)^2=(Perpendicular)^2+(Base)^2}\\\boxed{\bold{(PQ)^2=(PN)^2+(QN)^2}}

  • PQ = 39
  • PN = 15


\boxed{(39)^2=(15)^2+(QN)^2}\\\boxed{\bold{QN=√((39)^2-(15)^2) }}\\\boxed{QN=\bold{36}}


\boxed{(Hypotenuse)^2=(Perpendicular)^2+(Base)^2}\\\boxed{\bold{(PR)^2=(PN)^2+(QN)^2}}

  • PR = 17
  • PN = 15


\boxed{\bold{(17)^2=(15)^2+(RN)^2}}\\\boxed{\bold{RN=√((17)^2-(15)^2) }}\\\boxed{RN=\bold{8}}}

Adding the numbers:

36 + 8 = 44


\text{Hence, The correct answer is QR is, 44 in.}

in triangle pqr pq equals 39 inches, pr equals 17 inches, and hte altitude pn equals-example-1
User Harshal Parekh
by
3.1k points
10 votes
10 votes

In triangle PQR PQ equals 39 inches, PR equals 17 inches, and HTE altitude PN equals 15 inches. The correct answer is QR is, 44 in.

How did we figure this out?

Solution:


\boxed{\bold{= > (39)^2=(15)^2+(QN^2}}\\\boxed{= > QN=\bold{√((39)^2-(15)^2)} }\\\boxed{= > QN=\bold{36}}

Now we have to determine the side RN.

  • Side PR = 17
  • Side PN = 15

Now put all the values in the above expression, we get the value of side RN.


\boxed{\bold{= > (17)^2}=(15)^2+(RN)^2}\\\boxed{= > RN=\bold{√((17)^2-(15)^2) }}\\\boxed{= > RN=\bold{8}}

  • Side QR = 36 + 8
  • Side QR = 44

Therefore, In triangle PQR PQ equals 39 inches, PR equals 17 inches, and HTE altitude PN equals 15 inches. The correct answer is QR is, 44 inches.

User Kneemin
by
2.7k points