135k views
4 votes
X^2+2x-8/x^2+3x-10 • x+5/x^2 - 16 <<< help?

perform the indicated operations. Assume that no denominator has a value of 0.

1 Answer

3 votes

To solve the expression (x^2 + 2x - 8)/(x^2 + 3x - 10) * (x + 5)/(x^2 - 16), we can begin by factoring the quadratic expressions in the numerator and denominator of the first fraction:

(x^2 + 2x - 8)/(x^2 + 3x - 10) = ((x + 4)(x - 2))/((x + 5)(x - 2))

Similarly, we can factor the quadratic expression in the denominator of the second fraction:

(x + 5)/(x^2 - 16) = (x + 5)/((x + 4)(x - 4))

Substituting these expressions back into the original expression, we get:

((x + 4)(x - 2))/((x + 5)(x - 2)) * (x + 5)/((x + 4)(x - 4))

We can then cancel out the x - 2 and x + 4 factors in the numerator and denominator:

(x + 5)/(x - 4)

Therefore, the simplified expression is (x + 5)/(x - 4).

User Binarus
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories