Answer:
A^n = [4^n 4^n
0 1]
Explanation:
To find the solution for the 2x2 matrix A:
[4 4
0 1] to the nth power = [ ]
We can use matrix multiplication to raise A to the nth power. Let's start with n = 1:
A^1 = [4 4
0 1]
Now, let's solve for A^2 by multiplying A^1 by A:
A^2 = A x A^1
= [4 4 [4 4
0 1] 0 1]
= [16 16
0 1]
Next, let's solve for A^3:
A^3 = A x A^2
= [4 4 [16 16
0 1] 0 1]
= [64 64
0 1]
We can see a pattern emerging:
A^1 = [4 4
0 1]
A^2 = [16 16
0 1]
A^3 = [64 64
0 1]
We can generalize this pattern as follows:
A^n = [4^n 4^n
0 1]
Therefore, the solution for the 2x2 matrix A raised to the nth power is:
A^n = [4^n 4^n
0 1]