Answer:
To calculate M2, p2, and T2 at the exit of the combustor, we can use the isentropic relations for a nozzle, assuming that the flow through the combustor is adiabatic and isentropic.
Using the isentropic relations, we can relate the Mach number, pressure, and temperature at the exit of the combustor to their values at the inlet of the combustor.
M2 = sqrt((2/(gamma-1))*((T1/(1+((gamma-1)/2)*M1^2))*(1+((gamma-1)/2)*M1^2*0.5*(gamma+1)*0.5*(1+0.5*(gamma-1)*M1^2)^(-1)*(1-0.5*(gamma-1)*M1^2*0.5*(gamma+1)*0.5*(1+0.5*(gamma-1)*M1^2)^(-1)*(1+0.5*(gamma-1)*M1^2*0.5*(gamma+1)*0.5*(1+0.5*(gamma-1)*M1^2)^(-1)*((gamma+1)/(2*gamma))^((gamma+1)/(2*(gamma-1))))))^(-1))
where gamma = 1.4 is the specific heat ratio of the fuel-air mixture.
Substituting the given values, we get:
M2 = sqrt((2/(1.4-1))*((570/(1+((1.4-1)/2)*0.4^2))*(1+((1.4-1)/2)*0.4^2*0.5*(1+0.5*(1.4-1)*0.4^2)^(-1)*(1-0.5*(1.4-1)*0.4^2*0.5*(1+0.5*(1.4-1)*0.4^2)^(-1)*(1+0.5*(1.4-1)*0.4^2*0.5*(1+0.5*(1.4-1)*0.4^2)^(-1)*((1.4+1)/(2*1.4))^((1.4+1)/(2*(1.4-1))))))^(-1)) = 0.818
p2 = p1*(1+0.5*(gamma
Step-by-step explanation: