Explanation:
The equation of a circle with center (a, b) and radius r is:
(x - a)^2 + (y - b)^2 = r^2
Substituting the given values, we get:
(x - 11)^2 + (y - 9)^2 = 12^2
Expanding the square terms, we get:
(x^2 - 22x + 121) + (y^2 - 18y + 81) = 144
Simplifying the equation, we get:
x^2 - 22x + y^2 - 18y = -98
Therefore, the equation of the circle is:
x^2 - 22x + y^2 - 18y = -98.