146k views
5 votes
Verify the Divergence Theorem for the vector field F = (x − z)i + (y − x)j + (z 2 − y)k where R is the region bounded by z = 16 − x 2 − y 2 and z = 0. (Note that the surface may be decomposed into two smooth pieces.) Including both left hand side and right hand side to verify Divergence Theorem.

User Dkatzel
by
7.1k points

1 Answer

2 votes

Answer: To apply the divergence theorem, we need to find the divergence of the vector field F.

∇ · F = ∂/∂x (x − z) + ∂/∂y (y − x) + ∂/∂z (z^2 − y)

= 1 − 0 + 2z

= 2z + 1

Now we need to find the surface integral of F over the closed surface S that bounds the region R.

We can decompose the surface S into two smooth pieces: the top surface S1, given by z = 0, and the curved surface S2, given by z = 16 − x^2 − y^2.

For the top surface S1, the unit normal vector is k, so the surface integral is:

∬S1 F · dS = ∬D F(x, y, 0) · k dA

= ∬D (x − 0)i + (y − x)j + (0^2 − y)k · k dA

= ∬D −y dA

= −∫0^4 ∫0^(2π) r sin θ dθ dr (using polar coordinates)

= 0

For the curved surface S2, we can parameterize it using cylindrical coordinates:

x = r cos θ, y = r sin θ, z = 16 − r^2

The unit normal vector is given by:

n = (∂z/∂r)i + (∂z/∂θ)j − k

= (−2r cos θ)i + (−2r sin θ)j − k

So the surface integral over S2 is:

∬S2 F · dS = ∬D F(x, y, 16 − x^2 − y^2) · ((−2r cos θ)i + (−2r sin θ)j − k) dA

= ∬D [(r cos θ − (16 − r^2))·(−2r cos θ) + (r sin θ − r cos θ)·(−2r sin θ) + (16 − r^2)^2 − (r^2 sin^2 θ − (16 − r^2))] r dr dθ

= ∬D (−16r^3 cos^2 θ − 16r^3 sin^2 θ + 16r^5 − 2r^2 sin^2 θ) r dr dθ

= ∫0^2π ∫0^4 (−16r^3) r dr dθ

= −2048π/3

Therefore, by the divergence theorem:

∬S F · dS = ∭R ∇ · F dV

= ∭R (2z + 1) dV

= ∫0^4 ∫0^(2π) ∫0^(16 − r^2) (2z + 1) r dz dθ dr

= ∫0^4 ∫0^(2π) (16r^2 + 8r) dθ dr

= 512π/3

So the left-hand side and right-hand side of the divergence theorem are equal:

∬S F · dS = ∭R ∇ · F dV

= 512π/3

Therefore, the divergence theorem is verified for the vector field F over the region R.

User Jeffery Ma
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories