222k views
5 votes
Pretest: Unit 5

Question 6 of 25
If a sample proportion is 0.65, which range of possible values best describes
an estimate for the population parameter?
OA. (0.6, 0.69)
B. (0.65, 0.7)
O C. (0.5, 0.89)
OD. (0.5, 0.8)
SUBMIT

1 Answer

4 votes

The range of possible values for the population parameter can be estimated using the margin of error, which is calculated as the critical value times the standard error.

Assuming a 95% confidence level, the critical value is approximately 1.96. The standard error for a sample proportion can be calculated as:

SE = sqrt[(p * (1 - p)) / n]

Where p is the sample proportion and n is the sample size. Substituting the values given in the question, we get:

SE = sqrt[(0.65 * 0.35) / n]

We do not know the sample size, so we cannot calculate the standard error exactly. However, we can use a rule of thumb that states that if the sample size is at least 30, we can use the normal distribution to estimate the margin of error.

With a sample proportion of 0.65, the margin of error can be estimated as:

ME = 1.96 * sqrt[(0.65 * 0.35) / n]

We do not know the sample size, so we cannot calculate the margin of error exactly. However, we can use the rule of thumb that a margin of error of about ±5% is typical for a 95% confidence level.

Using this margin of error, we can construct the following range of possible values for the population parameter:

0.65 ± 0.05

This range can be expressed as (0.6, 0.7), which corresponds to option A.

Therefore, the correct answer is option A) (0.6, 0.69).

User Nsubiron
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories