175k views
3 votes
was PSE6 30.AE.03. [3660484] Question Details 2 Example 30.3 Magnetic Field on the Axis of a Circular Current Loop Problem Consider a circular loop of wire of radius R located in the yz plane and carrying a steady current I as in Figure 30.6. Calculate the magnetic field at an axial point P a distance x from the center of the loop. Strategy In this situation, note that any element as is perpendicular to f. Thus, for any element, ld5* xf| (ds)(1)sin 90° = ds. Furthermore, all length elements around the loop are at the same distancer from P, where r2 = x2 + R2. = Figure 30.6 The geometry for calculating the magnetic field at a point P lying on the axis of a current loop. By symmetry, the total field is along this axis,

User Birrel
by
7.5k points

1 Answer

5 votes

The magnetic field at an axial point P a distance x from the center of a circular current loop of radius R carrying a steady current I is given by the expression B = (μ0IR2)/(2(r2)^(3/2)), where r2 = x2 + R2.

To calculate the magnetic field at a point P on the axis of a circular current loop, we first need to determine the distance between the point P and the loop. Using the Pythagorean theorem, we can find that distance, which is given by r2 = x2 + R2.

Next, we use the Biot-Savart law to calculate the magnetic field at point P due to a small element of the loop. Since the element is perpendicular to the vector from the element to point P, the angle between them is 90 degrees, and sin(90) = 1.

We can simplify the expression and integrate over the entire loop to find the total magnetic field at point P. By symmetry, the magnetic field is along the axis of the loop. The resulting expression for the magnetic field is B = (μ0IR2)/(2(r2)^(3/2)), where μ0 is the permeability of free space, I is the current in the loop, R is the radius of the loop, and r2 is the distance between the point P and the center of the loop.

User Rimer
by
9.1k points

Related questions