200k views
5 votes
NO LINKS!! URGENT HELP PLEASE!!!

Solve ΔABC using the Law of Cosines

1. B= 36°, c = 19, a = 11

2. a = 21, b = 26, c = 17

User Jamseernj
by
7.6k points

1 Answer

3 votes

Answer:

1) A = 32.6°, C = 111.4°, b = 12.0

2) A = 53.6°, B = 85.7°, C = 40.7°

Explanation:

Question 1

Given values of triangle ABC:

  • B= 36°
  • c = 19
  • a = 11

First, find the measure of side b using the Law of Cosines for finding sides.


\boxed{\begin{minipage}{6 cm}\underline{Law of Cosines (for finding sides)} \\\\$c^2=a^2+b^2-2ab \cos (C)$\\\\where:\\ \phantom{ww}$\bullet$ $a, b$ and $c$ are the sides.\\ \phantom{ww}$\bullet$ $C$ is the angle opposite side $c$. \\\end{minipage}}

As the given angle is B, change C for B in the formula and swap b and c:


b^2=a^2+c^2-2ac\cos(B)

Substitute the given values and solve for b:


\implies b^2=11^2+19^2-2(11)(19)\cos(36^(\circ))


\implies b^2=482-418\cos(36^(\circ))


\implies b=\sqrt{482-418\cos(36^(\circ))}


\implies b=11.9929519...

Now we have the measures of all three sides of the triangle, we can use the Law of Cosines for finding angles to find the measures of angles A and C.


\boxed{\begin{minipage}{7.6 cm}\underline{Law of Cosines (for finding angles)} \\\\$\cos(C)=(a^2+b^2-c^2)/(2ab)$\\\\\\where:\\ \phantom{ww}$\bullet$ $C$ is the angle. \\ \phantom{ww}$\bullet$ $a$ and $b$ are the sides adjacent the angle. \\ \phantom{ww}$\bullet$ $c$ is the side opposite the angle.\\\end{minipage}}

To find the measure of angle A, swap a and c in the formula, and change C for A:


\implies \cos(A)=(c^2+b^2-a^2)/(2cb)


\implies \cos(A)=(19^2+(11.9929519...)^2-11^2)/(2(19)(11.9929519...))


\implies \cos(A)=0.842229094...


\implies A=\cos^(-1)(0.842229094...)


\implies A=32.6237394...^(\circ)

To find the measure of angle C, substitute the values of a, b and c into the formula:


\implies \cos(C)=(a^2+b^2-c^2)/(2ab)


\implies \cos(C)=(11^2+(11.9929519...)^2-19^2)/(2(11)(11.9929519...))


\implies \cos(C)=-0.364490987...


\implies C=\cos^(-1)(-0.364490987...)


\implies C=111.376260...^(\circ)

Therefore, the remaining side and angles for triangle ABC are:

  • b = 12.0
  • A = 32.6°
  • C = 111.4°


\hrulefill

Question 2

To solve for the remaining angles of the triangle ABC given its side lengths, use the Law of Cosines for finding angles.


\boxed{\begin{minipage}{7.6 cm}\underline{Law of Cosines (for finding angles)} \\\\$\cos(C)=(a^2+b^2-c^2)/(2ab)$\\\\\\where:\\ \phantom{ww}$\bullet$ $C$ is the angle. \\ \phantom{ww}$\bullet$ $a$ and $b$ are the sides adjacent the angle. \\ \phantom{ww}$\bullet$ $c$ is the side opposite the angle.\\\end{minipage}}

Given sides of triangle ABC:

  • a = 21
  • b = 26
  • c = 17

Substitute the values of a, b and c into the Law of Cosines formula and solve for angle C:


\implies \cos(C)=(a^2+b^2-c^2)/(2ab)


\implies \cos(C)=(21^2+26^2-17^2)/(2(21)(26))


\implies \cos(C)=(828)/(1092)


\implies C=\cos^(-1)\left((828)/(1092)\right)


\implies C=40.690560...^(\circ)

To find the measure of angle B, swap b and c in the formula, and change C for B:


\implies \cos(B)=(a^2+c^2-b^2)/(2ac)


\implies \cos(B)=(21^2+17^2-26^2)/(2(21)(17))


\implies \cos(B)=(54)/(714)


\implies B=\cos^(-1)\left((54)/(714)\right)


\implies B=85.6625640...^(\circ)

To find the measure of angle A, swap a and c in the formula, and change C for A:


\implies \cos(A)=(c^2+b^2-a^2)/(2cb)


\implies \cos(A)=(17^2+26^2-21^2)/(2(17)(26))


\implies \cos(A)=(524)/(884)


\implies A=\cos^(-1)\left((524)/(884)\right)


\implies A=53.6468753...^(\circ)

Therefore, the measures of the angles of triangle ABC with sides a = 21, b = 26 and c = 17 are:

  • A = 53.6°
  • B = 85.7°
  • C = 40.7°
User Karim N Gorjux
by
8.3k points