224k views
1 vote
NO LINKS!!! URGENT HELP PLEASE!!!!

Solve ΔABC using the Law of Cosines part 1

3. a = 12, b = 13, c = 20

4. A = 78°, b = 18, c = 10

User Jika
by
9.4k points

1 Answer

4 votes

Answer:

3) A = 35.2°, B = 38.6°, C = 106.2°

4) B = 70.4°, C = 31.6°, a = 18.7

Explanation:

Question 3

To solve for the remaining angles of the triangle ABC given its side lengths, use the Law of Cosines for finding angles.


\boxed{\begin{minipage}{7.6 cm}\underline{Law of Cosines (for finding angles)} \\\\$\cos(C)=(a^2+b^2-c^2)/(2ab)$\\\\\\where:\\ \phantom{ww}$\bullet$ $C$ is the angle. \\ \phantom{ww}$\bullet$ $a$ and $b$ are the sides adjacent the angle. \\ \phantom{ww}$\bullet$ $c$ is the side opposite the angle.\\\end{minipage}}

Given sides of triangle ABC:

  • a = 12
  • b = 13
  • c = 20

Substitute the values of a, b and c into the Law of Cosines formula and solve for angle C:


\implies \cos(C)=(a^2+b^2-c^2)/(2ab)


\implies \cos(C)=(12^2+13^2-20^2)/(2(12)(13))


\implies \cos(C)=(-87)/(312)


\implies \cos(C)=-(29)/(104)


\implies C=\cos^(-1)\left(-(29)/(104)\right)


\implies C=106.191351...^(\circ)

To find the measure of angle B, swap b and c in the formula, and change C for B:


\implies \cos(B)=(a^2+c^2-b^2)/(2ac)


\implies \cos(B)=(12^2+20^2-13^2)/(2(12)(20))


\implies \cos(B)=(375)/(480)


\implies B=\cos^(-1)\left((375)/(480)\right)


\implies B=38.6248438...^(\circ)

To find the measure of angle A, swap a and c in the formula, and change C for A:


\implies \cos(A)=(c^2+b^2-a^2)/(2cb)


\implies \cos(A)=(20^2+13^2-12^2)/(2(20)(13))


\implies \cos(A)=(425)/(520)


\implies A=\cos^(-1)\left((425)/(520)\right)


\implies A=35.1838154...^(\circ)

Therefore, the measures of the angles of triangle ABC with sides a = 12, b = 13 and c = 20 are:

  • A = 35.2°
  • B = 38.6°
  • C = 106.2°


\hrulefill

Question 4

Given values of triangle ABC:

  • A = 78°
  • b = 18
  • c = 10

First, find the measure of side a using the Law of Cosines for finding sides.


\boxed{\begin{minipage}{6 cm}\underline{Law of Cosines (for finding sides)} \\\\$c^2=a^2+b^2-2ab \cos (C)$\\\\where:\\ \phantom{ww}$\bullet$ $a, b$ and $c$ are the sides.\\ \phantom{ww}$\bullet$ $C$ is the angle opposite side $c$. \\\end{minipage}}

As the given angle is A, change C for A in the formula and swap a and c:


\implies a^2=c^2+b^2-2cb \cos (A)

Substitute the given values and solve for a:


\implies a^2=10^2+18^2-2(10)(18) \cos (78^(\circ))


\implies a^2=424-360\cos (78^(\circ))


\implies a=\sqrt{424-360\cos (78^(\circ))}


\implies a=18.6856038...

Now we have the measures of all three sides of the triangle, we can use the Law of Cosines for finding angles to find the measures of angles B and C.

To find the measure of angle C, substitute the values of a, b and c into the formula:


\implies \cos(C)=(a^2+b^2-c^2)/(2ab)


\implies \cos(C)=((18.6856038...)^2+18^2-10^2)/(2(18.6856038...)(18))


\implies \cos(C)=0.852040063...


\implies C=31.565743...^(\circ)

To find the measure of angle B, swap b and c in the formula, and change C for B:


\implies \cos(B)=(a^2+c^2-b^2)/(2ac)


\implies \cos(B)=((18.6856038...)^2+10^2-18^2)/(2(18.6856038...)(10))


\implies cos(B)=0.334888270...


\implies B=\cos^(-1)(0.334888270...)


\implies B=70.434256...^(\circ)

Therefore, the remaining side and angles for triangle ABC are:

  • B = 70.4°
  • C = 31.6°
  • a = 18.7
NO LINKS!!! URGENT HELP PLEASE!!!! Solve ΔABC using the Law of Cosines part 1 3. a-example-1
NO LINKS!!! URGENT HELP PLEASE!!!! Solve ΔABC using the Law of Cosines part 1 3. a-example-2
User Jason Huntley
by
8.1k points