201k views
5 votes
Suppose the length of a certain rectangle is 6 meters less than four times its width. The perimeter of the rectangle is 78 meters. Find the length and width of the rectangle.

1 Answer

3 votes

Answer:

Let's start by using the formula for the perimeter of a rectangle, which is:

P = 2L + 2W

where P is the perimeter, L is the length, and W is the width.

We're given that the perimeter is 78 meters, so we can write:

78 = 2L + 2W

Simplifying this equation, we get:

39 = L + W

We're also given that the length is 6 meters less than four times the width, so we can write:

L = 4W - 6

Now we can substitute this expression for L into the equation we got earlier:

39 = (4W - 6) + W

Simplifying this equation, we get:

39 = 5W - 6

Adding 6 to both sides, we get:

45 = 5W

Dividing both sides by 5, we get:

W = 9

So the width of the rectangle is 9 meters. We can use this value to find the length:

L = 4W - 6 = 4(9) - 6 = 30

So the length of the rectangle is 30 meters.

User Sushant Singh
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories