Answer:
Earthquakes are typically more intense closer to the initial disturbance because the seismic waves generated by the earthquake lose energy as they travel through the Earth's crust. The energy of the seismic waves is dissipated as they encounter different layers of rock and other materials, causing the waves to become weaker and less intense.
Closer to the initial disturbance, the seismic waves encounter less material to pass through, and therefore experience less energy loss. As a result, the waves are more intense and can cause more damage to structures and the surrounding environment.
In addition to this, the type of rock and soil that the seismic waves pass through can also affect their intensity. Softer materials like sand and clay amplify the seismic waves, which can cause more damage in the nearby areas.
Therefore, the distance from the initial disturbance and the geological features of the region can both affect the intensity of an earthquake. Typically, the closer an area is to the epicenter of an earthquake, the more intense the shaking will be, and the further away an area is, the weaker the shaking will be.