The speed of the ball can be calculated using the formula:
v = 2πr/T
where v is the speed of the ball, r is the length of the string, and T is the period of rotation (time taken for one revolution).
In this case, the length of the string is given as 0.507 m and the ball makes 2.2 revolutions every second. Therefore, the period of rotation (T) can be calculated as:
T = 1/f = 1/(2.2 rev/s) = 0.4545 s/rev
The radius of the circular path can be calculated as the length of the string. Therefore,
r = 0.507 m
Substituting these values in the formula, we get:
v = 2πr/T = 2π(0.507 m)/(0.4545 s/rev) = 7.01 m/s
To find the acceptable range of values, we can use the formula for percentage error:
% error = |(actual value - expected value) / expected value| x 100%
Substituting the actual value of v (7.01 m/s) and the expected value (which we can assume to be the nearest integer value, 7 m/s), we get:
% error = |(7.01 m/s - 7 m/s) / 7 m/s| x 100% = 0.14%
Therefore, the answer for the speed of the ball is 7.01 m/s, and it is within ±2.0% of the expected value.