113k views
1 vote
Find all solutions of the equation in radians.
sin(2x)sin(x)+cos(x)=0

1 Answer

2 votes

Answer:


x&=(1)/(2)\pi +2\pi n,\;\; (3)/(2)\pi + 2 \pi n

Explanation:

Given equation:


\sin(2x)\sin(x)+\cos(x)=0

Rewrite sin(2x) using the trigonometric identity sin(2x) = 2sin(x)cos(x):


\implies 2\sin(x)\cos(x)\sin(x)+\cos(x)=0


\implies 2\sin^2(x)\cos(x)+\cos(x)=0

Factor out cos(x):


\implies \cos(x)\left[2\sin^2(x)+1\right]=0

Applying the zero-product property:


\textsf{Equation 1:}\quad\cos(x)=0


\textsf{Equation 2:}\quad2\sin^2(x)+1=0

Solve each part separately.


\underline{\sf Equation \; 1}


\begin{aligned}\cos(x)&=0\\x&=\arccos(0)\\x&=(1)/(2)\pi +2\pi n,\;\; (3)/(2)\pi + 2 \pi n\end{aligned}


\underline{\sf Equation \; 2}


\begin{aligned}2\sin^2(x)+1&=0\\\sin^2(x)&=-(1)/(2)\;\;\;\;\;\;\leftarrow\;\textsf{No solution}\end{aligned}

Therefore, the solutions of the equation in radians are:


\boxed{x&=(1)/(2)\pi +2\pi n,\;\; (3)/(2)\pi + 2 \pi n}

User Derek Brown
by
8.8k points

No related questions found