Answer:
Explanation:
To solve the equation (T/12) + 5 = (T/3) + (T/4), we need to simplify the right-hand side of the equation by finding a common denominator for T/3 and T/4.
The least common multiple of 3 and 4 is 12, so we can rewrite T/3 and T/4 as (4T/12) and (3T/12), respectively. Substituting these expressions into the equation, we get:
(T/12) + 5 = (4T/12) + (3T/12)
Simplifying the right-hand side, we get:
(T/12) + 5 = (7T/12)
Subtracting (T/12) from both sides, we get:
5 = (6T/12)
Simplifying the right-hand side, we get:
5 = (T/2)
Multiplying both sides by 2, we get:
T = 10
Therefore, the solution to the equation is T = 10.