Answer:
if Mr. Kamau wants to give each of his children an equal amount of money, he can either:
Buy 1 item for his son (costing sh. 324) and 0 items for his daughter, giving each child sh. 162.
Buy 1 item for his son (costing sh. 324) and 1 item for his daughter (costing sh. 220), giving each child sh. 272.
Explanation:
Let x be the number of daughter items that Mr. Kamau will buy for his daughter. Since the son's item costs sh. 324, we know that each child should receive sh. (324 + 220x)/2.
We want to find how many items each child will buy, so we need to solve for x in the equation:
(324 + 220x)/2 = 220
Multiplying both sides by 2, we get:
324 + 220x = 440
Subtracting 324 from both sides, we get:
220x = 116
Dividing both sides by 220, we get:
x = 0.527
Since we can't buy a fraction of an item, Mr. Kamau should buy either 0 or 1 daughter item for his daughter. If he buys 0 daughter items, he can give his son sh. (324 + 2200)/2 = sh. 162. If he buys 1 daughter item, he can give each child sh. (324 + 2201)/2 = sh. 272. Therefore, the possible scenarios are:
Mr. Kamau buys 0 daughter items. His son buys 1 item and his daughter buys 0 items.
Mr. Kamau buys 1 daughter item. His son buys 1 item and his daughter buys 1 item.