3x^2+x-13 =1
Answer = step 1:
Move terms to the left side
Subtract the numbers
3x^ + x - 12 = 1
Step 2:
Use the quadratic formula:
(-b±√(b²-4ac))/(2a)
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
3x^2 + x - 13 = 0
a=3
b=1
c=-13
(-1±√(1²-4*3(-13)/(2*3)
Step 3:
Evaluate the exponent
Multiply the numbers
Add the numbers
Multiply the numbers
X= (-1±√(1²-4*3(-13)/(2*3)
X= (-1±√(157)/(6)
Step 4:
To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.
X= (-1+√(157)/(6)
X= (-1-√(157)/(6)
Step 5:
Rearrange and isolate the variable to find each solution.
X= (-1+√(157)/(6)
X= (-1-√(157)/(6)
Solution = X= (-1±√(157)/(6)