66.5k views
3 votes
Find the lengths of each triangle…
2x ft
6x ft
200ft

Find the lengths of each triangle… 2x ft 6x ft 200ft-example-1
User Onehalf
by
8.1k points

1 Answer

5 votes

Answer:


2x=20√(10)\; \textsf{ft} \approx 63.25\; \sf ft


6x=60√(10)\; \textsf{ft} \approx 189.74\; \sf ft

Explanation:

Assuming the given triangle is a right triangle, we can use Pythagoras Theorem to calculate the value of x and then find the measurers of the side lengths.

Pythagoras Theorem


\large{\boxed{a^2+b^2=c^2}

where:

  • a and b are the legs of the right triangle.
  • c is the hypotenuse (longest side) of the right triangle.

From inspection of the given diagram:

  • a = 2x
  • b = 6x
  • c = 200

Substitute these values into the formula and solve for x.


\begin{aligned} (2x)^2+(6x)^2&=200^2\\2^2\cdot x^2+6^2\cdot x^2&=40000\\4x^2+36x^2&=40000\\40x^2&=40000\\x^2&=1000\\x&=√(1000)\\x&=√(100 \cdot 10)\\x&=√(100){√(10)\\x&=10√(10)\end{aligned}

Substitute the found value of x into the expression for each side length.


2x=2 \cdot 10√(10)=20√(10)


6x=6\cdot 10√(10)=60√(10)

Therefore, the exact side lengths of the given right triangle are:


20√(10)\; \textsf{ft}, \;\;60√(10)\; \textsf{ft}, \;\; 200\; \textsf{ft}

The side lengths to the nearest hundredth are:

  • 63.25 ft
  • 189.74 ft
  • 200 ft
User Hemant Patel
by
7.6k points