Answer: A) Let's first calculate how far the van would have traveled in the half hour before the car started. The van's speed is 50 km/h, which means in half an hour it would have traveled 50/2 = 25 km.
Now let's consider the time it takes for the car to catch up to the van. We can represent this using the formula:
distance = rate × time
Let's call the time it takes for the car to catch up "t". We know that during this time, the van is also traveling. In fact, it has been traveling for t + 0.5 hours (the half hour before the car started plus the time it takes for the car to catch up). So the distance the van has traveled is:
distance van = 50 × (t + 0.5)
The distance the car has traveled is:
distance car = 60t
When the car catches up to the van, they will have traveled the same distance. So we can set the two distances equal to each other:
50(t + 0.5) = 60t
Simplifying this equation:
50t + 25 = 60t
Subtracting 50t from both sides:
25 = 10t
So t = 2.5 hours.
But we're not done yet! We need to add the 0.5 hours that the van traveled before the car started to get the total time it took for the car to catch up:
t + 0.5 = 2.5 + 0.5 = 3 hours
So the car catches up to the van 3 hours after the van started, or at 12:15 pm.
B) We can use the formula:
distance = rate × time
to find the distance between the two towns. We know the car traveled for 6 hours (from 9:45 am to 3:45 pm) and its speed was 60 km/h. So the distance it traveled is:
distance car = 60 × 6 = 360 km
We also know that the van traveled for 6.5 hours (from 9:15 am to 3:45 pm) and its speed was 50 km/h. So the distance it traveled is:
distance van = 50 × 6.5 = 325 km
The distance between the two towns is the difference between these two distances:
distance = distance car - distance van = 360 - 325 = 35 km
So the distance between the two towns is 35 km.