25.6k views
5 votes
. In ΔABC, m < B = 14°, m < C = 42° and a = 34. Find the length of b to the nearest tenth.

1 Answer

5 votes

i Got u Bro!

Obtuse scalene triangle.

Sides: a = 34 b = 9.922 c = 27.442

Area: T = 112.86

Perimeter: p = 71.364

Semiperimeter: s = 35.682

Angle ∠ A = α = 124° = 2.164 rad

Angle ∠ B = β = 14° = 0.244 rad

Angle ∠ C = γ = 42° = 0.733 rad

Height: ha = 6.639

Height: hb = 22.75

Height: hc = 8.225

Median: ma = 11.694

Median: mb = 30.495

Median: mc = 20.951

Inradius: r = 3.163

Circumradius: R = 20.506

Vertex coordinates: A[27.442; 0] B[0; 0] C[32.99; 8.225]

Centroid: CG[20.144; 2.742]

Coordinates of the circumscribed circle: U[13.721; 15.239]

Coordinates of the inscribed circle: I[25.76; 3.163]

Exterior (or external, outer) angles of the triangle:

∠ A' = α' = 56° = 2.164 rad

∠ B' = β' = 166° = 0.244 rad

∠ C' = γ' = 138° = 0.733 rad

User Lemmons
by
9.0k points