Answer:
So Alina can make a box with dimensions 8.445 inches by 8.445 inches by 8.445 inches (with a metal top) that will hold approximately 606.526 cubic inches.
Explanation:
Let's assume that the length of one side of the square base of the box is "x". Then the height of the box is also "x" to maximize the volume.
The surface area of the box (excluding the top) is given by:
2(x^2) + 4(x^2) = 6(x^2)
The surface area of the metal top is:
x^2
The total surface area of the box is the sum of the surface area of the box and the surface area of the metal top:
6(x^2) + x^2 = 7(x^2)
The cost of the wood for the box is:
5 cents per square inch * 6(x^2) = 30x^2 cents
The cost of the metal for the top is:
12 cents per square inch * x^2 = 12x^2 cents
The total cost of the box is:
30x^2 + 12x^2 = 42x^2 cents
We want to find the maximum volume of the box that can be made with $30, which is 3000 cents. Therefore, we can set up the equation:
42x^2 = 3000
Solving for x, we get:
x^2 = 71.429
x ≈ 8.445
Therefore, the maximum volume of the box is:
V = x^2 * x = (8.445)^3 ≈ 606.526 cubic inches.
So Alina can make a box with dimensions 8.445 inches by 8.445 inches by 8.445 inches (with a metal top) that will hold approximately 606.526 cubic inches.